Skip to content

2024/09

Microsoft Entra ID Protection

Microsoft Entra offers a comprehensive set of security features to protect your organization's data and resources. One of these features is ID Protection, which helps you secure your users' identities and prevent unauthorized access to your organization's data. Here are some key benefits of using ID Protection in Microsoft Entra:

  • Multi-factor authentication (MFA): ID Protection enables you to enforce multi-factor authentication for all users in your organization. This adds an extra layer of security to your users' accounts and helps prevent unauthorized access.

  • Conditional access policies: With ID Protection, you can create conditional access policies that define the conditions under which users can access your organization's resources. For example, you can require users to use multi-factor authentication when accessing sensitive data or restrict access to certain applications based on the user's location.

  • Risk-based policies: ID Protection uses advanced machine learning algorithms to detect suspicious activities and risky sign-in attempts. You can create risk-based policies that automatically block or allow access based on the risk level associated with the sign-in attempt.

  • Identity protection reports: ID Protection provides detailed reports and insights into your organization's identity security posture. You can use these reports to identify security risks, monitor user activity, and take proactive measures to protect your organization's data.

By using ID Protection in Microsoft Entra, you can enhance the security of your organization's data and resources and protect your users' identities from cyber threats. If you want to learn more about ID Protection and other security features in Microsoft Entra, contact us today!

I hope this helps!

Microsoft Entra Attribute Duplicate Attribute Resiliency

Microsoft Entra Attribute Duplicate Attribute Resiliency feature is also being rolled out as the default behavior of Microsoft Entra ID. This will reduce the number of synchronization errors seen by Microsoft Entra Connect (as well as other sync clients) by making Microsoft Entra ID more resilient in the way it handles duplicated ProxyAddresses and UserPrincipalName attributes present in on premises AD environments. This feature does not fix the duplication errors. So the data still needs to be fixed. But it allows provisioning of new objects which are otherwise blocked from being provisioned due to duplicated values in Microsoft Entra ID. This will also reduce the number of synchronization errors returned to the synchronization client. If this feature is enabled for your Tenant, you will not see the InvalidSoftMatch synchronization errors seen during provisioning of new objects.

Behavior with Duplicate Attribute Resiliency

graph TD
    A[Start] --> B[Provision or Update Object]
    B --> C{Duplicate Attribute?}
    C -- Yes --> D[Quarantine Duplicate Attribute]
    D --> E{Is Attribute Required?}
    E -- Yes --> F[Assign Placeholder Value]
    F --> G[Send Error Report Email]
    E -- No --> H[Proceed with Object Creation/Update]
    H --> G
    G --> I[Export Succeeds]
    I --> J[Sync Client Does Not Log Error]
    J --> K[Sync Client Does Not Retry Operation]
    K --> L[Background Timer Task Every Hour]
    L --> M[Check for Resolved Conflicts]
    M --> N[Remove Attributes from Quarantine]
    C -- No --> H

Differences between B2B Direct Connect and B2B Collaboration in Microsoft Entra

Microsoft Entra offers two ways to collaborate with external users: B2B Direct Connect and B2B Collaboration. Both features allow organizations to share resources with external users while maintaining control over access and security. However, they differ in functionality, access, and integration. Here is a comparison between B2B Direct Connect and B2B Collaboration:

Feature B2B Direct Connect B2B Collaboration
Definition Mutual trust relationship between two Microsoft Entra organizations Invite external users to access resources using their own credentials
Functionality Seamless collaboration using origin credentials and shared channels in Teams External users receive an invitation and access resources after authentication
Applications Shared channels in Microsoft Teams Wide range of applications and services within the Microsoft ecosystem
Access Single sign-on (SSO) with origin credentials Authentication each time resources are accessed, unless direct federation is set up
Integration Deep and continuous integration between two organizations Flexible way to invite and manage external users

I hope this helps!

Microsoft Defender for Storage

Microsoft Defender for Storage is part of the Microsoft Defender for Cloud suite of security solutions.

Introduction

Microsoft Defender for Storage is a cloud-native security solution that provides advanced threat protection for your Azure Storage accounts.

Microsoft Defender for Storage provides comprehensive security by analyzing the data plane and control plane telemetry generated by Azure Blob Storage, Azure Files, and Azure Data Lake Storage services. It uses advanced threat detection capabilities powered by Microsoft Threat Intelligence, Microsoft Defender Antivirus, and Sensitive Data Discovery to help you discover and mitigate potential threats.

Defender for Storage includes:

  • Activity Monitoring
  • Sensitive data threat detection (new plan only)
  • Malware Scanning (new plan only)

How it works

Microsoft Defender for Storage uses advanced threat detection capabilities powered by Microsoft Threat Intelligence, Microsoft Defender Antivirus, and Sensitive Data Discovery to help you discover and mitigate potential threats.

Activity Monitoring

Activity Monitoring provides insights into the operations performed on your storage accounts. It helps you understand the access patterns and operations performed on your storage accounts, and provides insights into the data plane and control plane activities.

Sensitive data threat detection

Sensitive data threat detection helps you discover and protect sensitive data stored in your storage accounts. It uses advanced machine learning models to detect sensitive data patterns and provides recommendations to help you protect your sensitive data.

Malware Scanning

Malware Scanning helps you detect and mitigate malware threats in your storage accounts. It uses advanced threat detection capabilities powered by Microsoft Defender Antivirus to scan your storage accounts for malware threats and provides recommendations to help you mitigate these threats.

Pricing

The pricing for Microsoft Defender for Storage is as follows:

Resource Type Resource Price
Storage Microsoft Defender for Storage €9 per storage account/month6
Storage Malware Scanning (add-on to Defender for Storage) €0.135/GB of data scanned

For more information about pricing, see the Microsoft Defender for Cloud pricing.

Conclusion

Microsoft Defender for Storage is a cloud-native security solution that provides advanced threat protection for your Azure Storage accounts. It uses advanced threat detection capabilities powered by Microsoft Threat Intelligence, Microsoft Defender Antivirus, and Sensitive Data Discovery to help you discover and mitigate potential threats.

For more information about Microsoft Defender for Storage, see the Overview of Microsoft Defender for Storage

Security Score System

The Common Vulnerability Scoring System (CVSS) is a framework for scoring the severity of security vulnerabilities. It provides a standardized method for assessing the impact of vulnerabilities and helps organizations prioritize their response to security threats. In this article, we will discuss the CVSS and how it can be used to calculate the severity of security vulnerabilities.

What is CVSS?

The Common Vulnerability Scoring System (CVSS) is an open framework for scoring the severity of security vulnerabilities. It was developed by the Forum of Incident Response and Security Teams (FIRST) to provide a standardized method for assessing the impact of vulnerabilities. CVSS assigns a numerical score to vulnerabilities based on their characteristics, such as the impact on confidentiality, integrity, and availability, and the complexity of the attack vector.

CVSS is widely used by security researchers, vendors, and organizations to prioritize their response to security threats. It helps organizations understand the severity of vulnerabilities and allocate resources to address the most critical issues first.

How is CVSS calculated?

In CVSS Version 4.0, vulnerabilities are scored on a scale of 0.0 to 10.0, with 10.0 being the most severe. The CVSS score is calculated based on several metrics groups, including:

  • Base Metric: The Base metric group represents the intrinsic characteristics of a vulnerability that are constant over time and across user environments. It is composed of two sets of metrics: the Exploitability metrics and the Impact metrics.

  • Threat metric group: The Threat metric group reflects the characteristics of a vulnerability related to threat that may change over time but not necessarily across user environments.

  • Environmental metric group: The Environmental metric group represents the characteristics of a vulnerability that are relevant and unique to a particular user's environment.

  • The Supplementary metric group: The Supplemental metric group includes metrics that provide context as well as describe and measure additional extrinsic attributes of a vulnerability.

CVSS Version 4.0 Metrics

Base Metrics

The Base metric group includes the following metrics:

  • Exploitability Metrics: These metrics describe the characteristics of the vulnerability that affect how easy it is to exploit. They include the Attack Vector (AV), Attack Complexity (AC), Privileges Required (PR), and User Interaction (UI).
  • Vulnerable System Impact Metrics: These metrics describe the impact on the system if the vulnerability is exploited. They include the Confidentiality(VC), Integrity (VI), and Availability (VA) impacts.
  • Subsequent System Impact Metrics: These metrics describe the impact on the system if the vulnerability is exploited. They include the Confidentiality(SC), Integrity (II), and Availability (SA) impacts.
Exploitability Metrics
  • Attack Vector (AV): This metric describes the context where vulnerability is exploited. It can be either Local (L), Adjacent Network (A), Network (N), or Physical (P).
  • Attack Complexity (AC): This metric describes the complexity of the attack required to exploit the vulnerability. It can be either Low (L), High (H).
  • Privileges Required (PR): This metric describes the level of privileges required to exploit the vulnerability. It can be either None (N), Low (L), or High (H).
  • User Interaction (UI): This metric describes whether user interaction is required to exploit the vulnerability. It can be either None (N), Required (R).
Vulnerable System Impact Metrics
  • Confidentiality Impact (VC): This metric measures the impact on the confidentiality of the information managed by the vulnerable system due to a successful exploit of the vulnerability. It can be either Low (L), High (H), or None (N).

  • Integrity Impact (VI): This metric measures the impact on the integrity of the information managed by the vulnerable system due to a successful exploit of the vulnerability. It can be either Low (L), High (H), or None (N).

  • Availability Impact (VA): This metric measures the impact on the availability of the services of the vulnerable system due to a successful exploit of the vulnerability. It can be either Low (L), High (H), or None (N).

Subsequent System Impact Metrics
  • Confidentiality Impact (SC): This metric measures the impact to the confidentiality of the information managed by the Subsequent System due to a successful exploit of the vulnerability. It can be either Low (L), High (H), or None (N).

References

markmap

markmap is a visualisation tool that allows you to create mindmaps from markdown files. It is based on the mermaid library and can be used to create a visual representation of a markdown file.

Installation in mkdocs

To install markmap in mkdocs, you need install the plugin using pip:

pip install mkdocs-markmap

Then, you need to add the following lines to your mkdocs.yml file:

plugins:
  - markmap

Usage

To use markmap, you need to add the following code block to your markdown file:

```markmap  
# Root

## Branch 1

* Branchlet 1a
* Branchlet 1b

## Branch 2

* Branchlet 2a
* Branchlet 2b
```

And this will generate the following mindmap:

alt text

That is for the future, because in my mkdocs not work as expected:

# Root

## Branch 1

* Branchlet 1a
* Branchlet 1b

## Branch 2

* Branchlet 2a
* Branchlet 2b

Visual Studio Code Extension

There is also a Visual Studio Code extension that allows you to create mindmaps from markdown files. You can install it from the Visual Studio Code marketplace.

    Name: Markdown Preview Markmap Support
    Id: phoihos.markdown-markmap
    Description: Visualize Markdown as Mindmap (A.K.A Markmap) to VS Code's built-in markdown preview
    Version: 1.4.6
    Publisher: phoihos
    VS Marketplace Link: https://marketplace.visualstudio.com/items?itemName=phoihos.markdown-markmap
VS Marketplace Link

Conclusion

I don't like too much this plugin because it not work as expected in my mkdocs but it's a good tool for documentation.

References